August 2023

Winning the Battle Against 1,4-Dioxane with Ozone Advanced Oxidation

Denise Funk, PE, BCEE

770.652.1155 DFunk@BrwnCald.com

Agenda

- 1. What is 1,4-Dioxane?
- 2. Project Background
- 3. Treatability Studies
- 4. Cost Comparison of Treatment Options
- 5. Full Scale Results
- 6. UVT for Process Control
- 7. Conclusions

1,4-Dioxane is a clear, synthetic organic chemical found in many consumer products and historically used in chlorinated solvents

Reference: https://www.citizenscampaign.org/14dioxane
Proceedings of the IOA-PAG Annual Conference, Copyright 2023, International Ozone Association

1,4-dioxane gets into the water cycle through multiple and related pathways

*these releases may also go to wastewater treatment plants

Figure 1-2. Production of 1,4-Dioxane as a Byproduct and Potential Exposure Pathways

Reference: EPA Draft Supplement to the Risk Evaluation for 1,4-Dioxane, July 2023

Hydroxyl radicals have more oxidation power than other common chemicals used in water treatment.

Brown and Caldwell

This project began with a process evaluation to determine best replacement option for an aging UV-AOP system.

Advanced Oxidation Process Treatment Objectives

- Organics removal
- 1,4-dioxane is 'controlling compound'
- Also removes: SVOCs, PCB congeners
- Design feed water 1,4-dioxane concentration
 285 μg/L
- Design treated water 1,4-dioxane concentration < 0.63 μg/L

General water quality includes low bulk organics, but high 1,4-D and poor UV Transmittance.

Parameter	Units	UV-H ₂ O ₂ Test	O ₃ -H ₂ O ₂ Batch Test ¹	O ₃ -H ₂ O ₂ Semi-batch Test
1,4-Dioxane	μg/L	166	108	185-218
рН	SU	7.91	7.61	7.83
UV Transmittance (UVT)	%	74	81	73
Total Organic Carbon (TOC)	mg/L	2.9	3.2	2.5
Chemical Oxygen Demand (COD)	mg/L	16	12	12
Alkalinity	mg/L as CaCO ₃	210	209	193
Dissolved Iron	mg/L	0.055	NA	0.040

¹Values from diluted sample prior to ozone stock solution addition

UV-Peroxide Bench Scale Tests

UV Batch Reactor

- 40 W low-pressure lamp
- Three UV doses (500, 2000, and 3500 mJ/cm2)
- Three hydrogen peroxide doses (25, 35, and 50 mg/L)

Ozone-Peroxide Bench Scale Tests – Batch method should consider dilution of the sample with the stock solution

Brown and Caldwell

Ozone-Peroxide Bench Scale Tests – Semi-Batch Method relies on multiple instruments for calculating transferred ozone dose

Semi-Batch Method

- Directly ozonate sample (10 mg/L to 25 mg/L, no dilution)
- Pre-dosed with hydrogen peroxide at 1:1 molar ratio
- Continuous measurement of gas flow and ozone concentration into and out of reactor
- Sum each time step to calculate ozone transferred to sample

Ozone-Peroxide Bench Scale Tests - Challenge Testing

- Spiked samples with compounds sometimes found in this water matrix
 - 100 µg/L of 2-chloroaniline
 - 100 µg/L of azobenzene
 - 25 of µg/L bis(2ethylhexyl)phthalate (DEHP)
- Spiked chemicals removed and no impact on 1,4-Dioxane removal efficacy

Bench test results showed that increasing ozone and peroxide dose decreases 1,4-Dioxane concentration

Notes

- Batch and semi-batch tests conducted on two different water samples from full scale facility
- 2. Batch test 1,4-Dioxane Initial 144 µg/L Diluted 108 µg/L
- 3. Semi-batch test 1,4-Dioxane Initial 202 µg/L

UV-AOP predicted to cost twice as much as Ozone-AOP

UV-Peroxide					
Criteria	Unit	Value			
Flowrate	gpm	60 - 120			
Design UV Dose	mJ/cm ²	2000			
Design Peroxide Dose	mg/L	35			
Budget Capital Cost	US\$	\$1.3M			
Annual Costs	US \$/yr	\$86 - 104k			
Present Value 20 yr Life Cycle Cost	US \$	\$2.5 - 2.8M			

Ozone-Peroxide					
Criteria	Unit	Value			
Flowrate	gpm	60 - 120			
Design O ₃ Dose	mg/L	15			
Design Peroxide Dose	mg/L	15			
Budget Capital Cost	US\$	\$0.42M			
Annual Costs	US \$/yr	\$25 - 31k			
Present Value 20 yr Life Cycle Cost	US\$	\$0.8 - 0.9M			

Budget cost estimates from April 2020

UV - major annual costs include power, lamp and ballast replacement

Ozone-AOP System Design Criteria

• Process Flow Range 50 – 90 gpm (189 – 341 lpm)

Hydrogen Peroxide Dose
 7.1 – 21.3 mg/L

Transferred Ozone Dose
 10.0 – 30.0 mg/L

Ozone Generator Production
 7 – 38 pounds per day (132 – 718 g/hr)

Ozone-in-oxygen Gas Concentration 8 to 12 percent by weight

Ozone Dissolution Method
 Sidestream Injection

Ozone Mass Transfer Efficiency
 Greater than or equal to 90 percent

Ozone-AOP Systems involve multiple components

Brown and Caldwell

Full scale installation provides functionality in a small space

Brown and Caldwell

Injection skid provides streamlined design for ozone and peroxide dosing

Contactor and Destruct Unit

Brown and Caldwell

Full scale results show better performance than semi-batch predictions

Repeat testing after six months closely match start up tests and batch results

Log removal is linear with ozone dose until reaching diminishing return at 25 mg/L

UVT is correlated to 1,4-dioxane concentration

Brown and Caldwell

UVT above 90% meets permit limit UVT above 92% indicates 1,4-dioxane is less than half the permit limit

Conclusions

- Well designed and executed treatability studies provide reliable data for process selection and design development
- Ozone AOP can be lower cost than UV AOP depending on raw water quality parameters, particularly UVT
 - Low UVT means higher UV dose increasing capital and power costs
- UVT shows promise for process control and ozone dose optimization to meet 1,4-dioxane concentration targets

Acknowledgements

- Brown and Caldwell Treatability Lab in Nashville, TN
- Brown and Caldwell Design and Startup Team
- Facility Operations Staff

Thank you. Questions?

Denise Funk

DFunk@brwncald.com

