Contact Us

Ozone Applications

1,4-Dioxane removal with ozone A New Formulation Based on Ozonated Sunflower Seed Oil: In Vitro Antibacterial and Safety Evaluation AOP Agri-Food Processing Air Treatment Antibacterial Activity of Ozonized Sunflower Oil, Oleozón, Against Staphylococcus aureus and Staphylococcus epidermidis. Antifungal Activity of Olive Oil and Ozonated Olive Oil Against Candida Spp. and Saprochaete Spp. Aquaculture BTEX Remediation under Challenging Site Conditions Using In-Situ Ozone Injection and Soil Vapor Extraction Technologies: A Case Study BTEX removal with ozone Beef (Red Meat) Processing with Ozone Benzene Body Odors Bottled Water Cannabis Catalytic Ozonation of Gasoline Compounds in Model and Natural Water in the Presence of Perfluorinated Alumina Bonded Phases Clean in Place (CIP) Combined Ozone and Ultrasound for the Removal of 1,4-Dioxane from Drinking Water Cooling Tower Cost Effectiveness of Ozonation and AOPs for Aromatic Compound Removal from Water: A Preliminary Study Create your own Ozonated Oils Dairy Farms Degradation of tert-Butyl Alcohol in Dilute Aqueous Solution by an O3/UV Process Drinking Water Drinking Water Disinfection E.coli O157:H7 Reduction with Ozone Effectiveness of Ozone for Inactivation of Escherichia coli and Bacillus Cereus in Pistachios Efficiency of Ozonation and AOP for Methyl-tert-Butylether (MTBE) Removal in Waterworks Ethylbenzene Evaluation of Ozone AOP for Degradation of 1,4-Dioxane Exploring the Potential of Ozonated Oils in Dental Care Exploring the Potential of Ozonated Oils in Hair Care Fire Restoration Food Odors Force Main Treatment Germicidal Properties of Ozonated Sunflower Oil Grain Treatment Groundwater Remediation Hoof Bath Hydroponic Greenhouses In Vitro Antimicrobial Activity of Ozonated Sunflower Oil against Antibiotic-Resistant Enterococcus faecalis Isolated from Endodontic Infection Influence of Storage Temperature on the Composition and the Antibacterial Activity of Ozonized Sunflower Oil Insect Control in Grains Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils Laundry Laundry Listeria Inactivation with Ozone MTBE removal with ozone Machine Coolant Tanks Measurement of Peroxidic Species in Ozonized Sunflower Oil Mitigation strategies for Salmonella, E. coli O157:H7, and Antimicrobial Resistance Throughout the Beef Production Chain Mold Removal in Grain Mold/Mildew Odors Municipal Water Treatment Mycotoxin Reduction in Grain Nanobubbles Odor Removal Oxidation of Methyl tert-Butyl Ether (MTBE) and Ethyl tert-Butyl Ether (ETBE) by Ozone and Combined Ozone/Hydrogen Peroxide Oxidize Tannins from Water with Ozone Oxy-Oils Ozonated Oils Ozonated Ice & Fish Storage Ozonated Mineral Oil: Preparation, Characterization and Evaluation of the Microbicidal Activity Ozonated Oils: Nature's Remedy for Soothing Bug Bites Ozonated Olive Oil Ozonated Olive Oil Enhances the Growth of Granulation Tissue in a Mouse Model of Pressure Ulcer Ozonated Olive Oil with a High Peroxide Value for Topical Applications: In-Vitro Cytotoxicity Analysis with L929 Cells Ozonation Degree of Vegetable Oils as the Factor of Their Anti-Inflammatory and Wound-Healing Effectiveness Ozonation of Soluble Organics in Aqueous Solutions Using Microbubbles Ozone Gas and Ozonized Sunflower Oil as Alternative Therapies against Pythium Insidiosum Isolated from Dogs Ozone Inactivation of E.Coli at Various O3 Concentrations and Times Ozone Regulations in Food Processing Ozone Regulations in Organic Food Production Ozone in Air Applications Ozone in Sanitation Ozone in Seafood Processing Ozone use for Post-Harvest Processing of Berries Ozone use for Surface Sanitation on Dairy Farms Pet Odors Physico-chemical Characterization and Antibacterial Activity of Ozonated Pomegranate Seeds Oil Pool & Spa Proinflammatory Event of Ozonized Olive Oil in Mice RES Case Studies Resolution Concerning the Use of Ozone in Food Processing Spectroscopic Characterization of Ozonated Sunflower Oil Stability Studies of Ozonized Sunflower Oil and Enriched Cosmetics with a Dedicated Peroxide Value Determination Study of Ozonated Olive Oil: Monitoring of the Ozone Absorption and Analysis of the Obtained Functional Groups Study of Ozonated Sunflower Oil Using 1H NMR and Microbiological Analysis Surface Sanitation TBA Removal with ozone Teat Wash Tobacco Odors Toluene Treatment of Groundwater Contaminated with 1,4-Dioxane, Tetrahydrofuran, and Chlorinated Volatile Organic Compounds Using Advanced Oxidation Processes Treatment of groundwater contaminated with gasoline components by an ozone/UV process Ultra-Pure Water Utilization of Ozone for the Decontamination of Small Fruits Various Antimicrobial Agent of Ozonized Olive Oil Vertical Farming with Ozone Waste Water Treatment Water Re-use Water Treatment Water Treatment Well Water Treatment Xylene

Ozone Generator Output vs Concentration

Ozone generator performance metrics are commonly referred to in concentration (either % by weight or g/m3) or ozone output (g/hr or lb/day). These measurements are both important to quantifying the ozone production of an ozone generator. But what do they mean, and which is more important?

Link to ozone generation performance metrics HERE.

Every ozone application is different. And based on your application the concentration or overall output of ozone production is more or less relevant.


ozone g/hr vs g/m3



Ozone Output:

Normally measured in g/hr or lb/day

The ozone output value is shown in a mass over time value that indicates mass of ozone produced in a given period of time. As flow rate of feed-gas through the ozone generator increases, however, the concentration of ozone decreases. This is a trade-off that exists across the entire flow-range of ozone feed-gas through most ozone generators.

 

Ozone Concentration:

Normally measured in g/m3 or % by weight

Ozone concentration is the ratio of total feed-gas to ozone production. As flow rate of feed-gas through an ozone generator decreases, ozone concentration increases. As flow increases less of the oxygen in the feed-gas is converted into ozone as the contact time for the feed-gas in the ozone generator decreases, there is less time to produce ozone out of the given volume of gas.

 

 

Ozone Applications:

Water Treatment:

When ozone is used to be dissolved into water ozone solubility becomes important. Solubility is the ratio of ozone gas that will dissolve into water based on physical conditions.

Link to ozone solubility

As ozone concentration increases the solubility of ozone into water increases. Therefore, ozone output in g/hr becomes less relevant when dissolving ozone into water. Higher ozone dosages into water will require higher ozone concentration to achieve solubility into water. Overall ozone production is necessary to achieve desired ozone dosage rate, however if ozone concentration at that production rate is very low, ozone gas will never dissolve into the water and be lost.

There is a balance to ozone concentration vs ozone output when using ozone for water treatment. A simple rule of thumb, if you have the choice to use an ozone generation system that provides the same ozone output in g/hr but at a higher ozone concentration, choose the higher ozone concentration every time.

 

Air Treatment:

There are ozone applications where ozone is used in air treatment only. Odor removal, food storage, etc. In these applications ozone concentration is much less important. Ozone output in g/hr is the only factor that is relevant in most of these applications. More ozone mass will provide more ozone dosage into the air.

Consider oxygen or air consumption along with power consumption in these applications.

 

Groundwater Remediation:

Ozone used for in-situ groundwater remediation is normally diluted with air, to increase the radius of influence of the ozone gas in the water table.  Due to this dilution ozone concentration is not a major factor in this application.  Ozone output is the only major factor considered in this application.

  

Cooling Towers:

Ozone is used for cooling tower treatment as a biocide in the cooling tower.  In these applications, very low ozone dosage rates are used in the water.  Therefore ozone concentration is not as important in many of these applications as ozone solubility is not as critical.