Contact Us

Ozone Applications

1,4-Dioxane removal with ozone A New Formulation Based on Ozonated Sunflower Seed Oil: In Vitro Antibacterial and Safety Evaluation AOP Agri-Food Processing Air Treatment Antibacterial Activity of Ozonized Sunflower Oil, Oleozón, Against Staphylococcus aureus and Staphylococcus epidermidis. Antifungal Activity of Olive Oil and Ozonated Olive Oil Against Candida Spp. and Saprochaete Spp. Aquaculture BTEX Remediation under Challenging Site Conditions Using In-Situ Ozone Injection and Soil Vapor Extraction Technologies: A Case Study BTEX removal with ozone Beef (Red Meat) Processing with Ozone Benzene Body Odors Bottled Water Cannabis Catalytic Ozonation of Gasoline Compounds in Model and Natural Water in the Presence of Perfluorinated Alumina Bonded Phases Clean in Place (CIP) Combined Ozone and Ultrasound for the Removal of 1,4-Dioxane from Drinking Water Cooling Tower Cost Effectiveness of Ozonation and AOPs for Aromatic Compound Removal from Water: A Preliminary Study Create your own Ozonated Oils Dairy Farms Degradation of tert-Butyl Alcohol in Dilute Aqueous Solution by an O3/UV Process Drinking Water Drinking Water Disinfection E.coli O157:H7 Reduction with Ozone Effectiveness of Ozone for Inactivation of Escherichia coli and Bacillus Cereus in Pistachios Efficiency of Ozonation and AOP for Methyl-tert-Butylether (MTBE) Removal in Waterworks Ethylbenzene Evaluation of Ozone AOP for Degradation of 1,4-Dioxane Exploring the Potential of Ozonated Oils in Dental Care Exploring the Potential of Ozonated Oils in Hair Care Fire Restoration Food Odors Force Main Treatment Germicidal Properties of Ozonated Sunflower Oil Grain Treatment Groundwater Remediation Hoof Bath Hydroponic Greenhouses In Vitro Antimicrobial Activity of Ozonated Sunflower Oil against Antibiotic-Resistant Enterococcus faecalis Isolated from Endodontic Infection Influence of Storage Temperature on the Composition and the Antibacterial Activity of Ozonized Sunflower Oil Insect Control in Grains Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils Laundry Laundry Listeria Inactivation with Ozone MTBE removal with ozone Machine Coolant Tanks Measurement of Peroxidic Species in Ozonized Sunflower Oil Mitigation strategies for Salmonella, E. coli O157:H7, and Antimicrobial Resistance Throughout the Beef Production Chain Mold Removal in Grain Mold/Mildew Odors Municipal Water Treatment Mycotoxin Reduction in Grain Nanobubbles Odor Removal Oxidation of Methyl tert-Butyl Ether (MTBE) and Ethyl tert-Butyl Ether (ETBE) by Ozone and Combined Ozone/Hydrogen Peroxide Oxidize Tannins from Water with Ozone Oxy-Oils Ozonated Oils Ozonated Ice & Fish Storage Ozonated Mineral Oil: Preparation, Characterization and Evaluation of the Microbicidal Activity Ozonated Oils: Nature's Remedy for Soothing Bug Bites Ozonated Olive Oil Ozonated Olive Oil Enhances the Growth of Granulation Tissue in a Mouse Model of Pressure Ulcer Ozonated Olive Oil with a High Peroxide Value for Topical Applications: In-Vitro Cytotoxicity Analysis with L929 Cells Ozonation Degree of Vegetable Oils as the Factor of Their Anti-Inflammatory and Wound-Healing Effectiveness Ozonation of Soluble Organics in Aqueous Solutions Using Microbubbles Ozone Gas and Ozonized Sunflower Oil as Alternative Therapies against Pythium Insidiosum Isolated from Dogs Ozone Inactivation of E.Coli at Various O3 Concentrations and Times Ozone Regulations in Food Processing Ozone Regulations in Organic Food Production Ozone in Air Applications Ozone in Sanitation Ozone in Seafood Processing Ozone use for Post-Harvest Processing of Berries Ozone use for Surface Sanitation on Dairy Farms Pet Odors Physico-chemical Characterization and Antibacterial Activity of Ozonated Pomegranate Seeds Oil Pool & Spa Proinflammatory Event of Ozonized Olive Oil in Mice RES Case Studies Resolution Concerning the Use of Ozone in Food Processing Spectroscopic Characterization of Ozonated Sunflower Oil Stability Studies of Ozonized Sunflower Oil and Enriched Cosmetics with a Dedicated Peroxide Value Determination Study of Ozonated Olive Oil: Monitoring of the Ozone Absorption and Analysis of the Obtained Functional Groups Study of Ozonated Sunflower Oil Using 1H NMR and Microbiological Analysis Surface Sanitation TBA Removal with ozone Teat Wash Tobacco Odors Toluene Treatment of Groundwater Contaminated with 1,4-Dioxane, Tetrahydrofuran, and Chlorinated Volatile Organic Compounds Using Advanced Oxidation Processes Treatment of groundwater contaminated with gasoline components by an ozone/UV process Ultra-Pure Water Utilization of Ozone for the Decontamination of Small Fruits Various Antimicrobial Agent of Ozonized Olive Oil Vertical Farming with Ozone Waste Water Treatment Water Re-use Water Treatment Water Treatment Well Water Treatment Xylene

Ozone Generator Performance Chart Defined

Importance of an ozone generator performance chart:

Ozone generator performance must be measured and tested to quantify the production of ozone. For most applications, ozone production is the number one factor in choosing an ozone generator for that application. Therefore, it is imperative a reliable performance chart be reviewed prior to the purchase of any device that may produce ozone.

Image below is given as an example of an ozone generator performance chart:

Understanding ozone generator performance chart

An ozone generator performance chart may show various data in relationship to ozone production or concentration. Below are some definitions of this data and what you might look for.

 

Ozone Production:

Ozone production is commonly shown in g/hr, but also may be shown in mg/hr, lb/day or another unit of measure. The ozone production value must be shown in a mass over time value that indicates mass of ozone produced in a given period of time. This value is a calculated value based on ozone concentration and feed-gas flow rate.

 

Ozone Concentration:

Ozone concentration is a measurement that shows the ratio of ozone to feed-gas produced from the ozone generator. This is real-time measurement that is obtained via a high concentration UV Ozone Analyzer. Ozone concentration may be shown in % by weight, g/m3, or another unit of measure that illustrates a mass of ozone at a given moment.

 

Feed-Gas:

The ozone generator feed-gas may be oxygen, or air. This information must be present to determine what gas was used, and what gas must be used to achieve the same results. Oxygen purity, or air dew-point values would be helpful information.

 

Flow-Rate:

The flow-rate of gas must be given to show the required flow-rate to achieve the reported ozone concentration and calculated production. Ensure that measured flow is compensated for pressure as manual float type flowmeters readings need to be calculated for pressure. We have found some performance charts that were created using direct readings from manual flow meters without calculating for pressure, this gives a false low flow-rate, false high ozone concentration, and false high ozone production rate.

 

Feed-Gas Pressure:

Feed-gas pressure would indicate the pressure of fed-gas on the ozone generator corona cell. Some ozone generators ozone production will rise or fall as gas pressure on the corona cell changes. Therefore you might see a performance chart show the relationship between ozone production and pressure.

 

Power Setting:

The power setting of the ozone generator could be shown to illustrate how ozone production varies with changes in the adjustable ozone output dial or remote signal. This could be shown in a % or specific indication of the dial.

 

Power Consumption:

Power consumption could be shown in relationship to ozone production to show the net result or change of power consumption based on the power setting value on the ozone production. This would illustrate energy consumed by the ozone generator for a specific ozone production rate. This information could be used to determine electrical efficiency of the ozone generator.

 

 

More Info:

     -Common ozone units of measure (if you need to convert any units)

     -Ozone Calculations

     -Understand how to interpret ozone generator performance charts