Ozone use in the cannabis industry

As the cannabis industry grows in the USA the interest in the use of ozone in this industry grows. There are many applications and potential uses for ozone in the cannabis industry, both in the growing and processing of cannabis. However, there are also many myths and potential misunderstandings on the use of ozone in this industry. This article will serve as a general guide to help understand the practical uses of ozone in this industry.

Irrigation water treatment:

Cannabis can be grown in many ways, in each, whether indoor, outdoor, hydroponic, or other, all require irrigation water for growing the plants. This water must be clean, pure and free of pathogenic bacteria for efficient plant growth. Ozone can be used to treat general well water for removal of harmful minerals and bacteria. See link HERE for additional details on these applications. Ozone can also be used to treat other incoming water sources that may have harmful pathogens, or generally low dissolved oxygen levels due to organics in water.

Ozone is commonly used to treat well water, and city water sources for many water treatment issues. The use of ozone in water treatment is common, and is one of the oldest and most frequent uses for ozone in the world. Using the same systems and processes that would be used in other agriculture applications, or drinking water applications is applicable in the cannabis industry with no major changes to the systems or technologies.

As ozone is more soluble into water than oxygen, and ozone will revert to oxygen naturally in water, adding ozone to your water will naturally increase dissolved oxygen levels in that water. Increased dissolved oxygen levels in water are always beneficial for irrigation systems.

Surface sanitation:

Ozone can be dissolved into water to be used for surface sanitation in rooms, equipment, and even plants if required. Ozone gas is produced, dissolved into water at high levels and used as a sanitizer. Ozone increases the ORP (oxidation-reduction potential) in the water to a level that if any of the water comes into contact with pathogens on the surface being treated.

This same application with ozone is common in the food processing industry. Many studies have been done on the use of ozone in these applications for food processing, and there are many ozone system currently in use for these applications. The same systems and processes used in the food processing industry can also be used in the horticulture and further processing of the cannabis plant.

We have provided ozone systems for surface sanitation applications by themselves. We have also supplied ozone systems capable of treating both incoming irrigation water and providing the higher dissolved ozone levels necessary for surface sanitation in one package with one ozone generation system, but 2 separate ozone mixing systems to dissolve ozone in water in two separate water streams and control individually.

Ozone in water for surface sanitation is safe, there are no harmful side-effects to humans or plants from ozone in water. However, if done incorrectly ozone in water can be off-gassed from water and enter the gas phase. Ozone in the gas phase can be harmful to both humans and plants. In this application ensure ozone is implemented and operated properly.

Odor Control:

Likely the oldest and traditionally the most common use of ozone in the cannabis growing industry, is odor control. Ozone is extremely effective at reducing organic odors and is used in many applications for odor reduction/elimination. During the growing, cultivation, and processing of the cannibis plant odors are created that can be potentially offensive. In applications where neighbors are close by or there may be aversions to any fugitive odors ozone can be used in the air exhaust of the building to eliminate odors effectively.

Cannibis Disinfection:

The final harvested product must meet specific mold, and bacteria standards to be sold to the end-user for consumption. There are state standards and good manufacturing processes to adhere to on mold and bacteria counts on final products. Ozone can be used to provide disinfection for this final product to met the most stringent mold and bacteria standards in your state.

Room Disinfection:

Ozone gas can be used in rooms to inactivate pathogens. Ozone gas can be used after aqueous ozone is used for surface sanitation to ensure all pathogens in the room are destroyed before starting a new crop, or between processing batches of harvested product. The room must be empty of plants and people, ozone gas can be pumped into the room at levels that would be harmful to plant, people and all pathogens. Ozone monitors can be used to control ozone levels and ensure the room is safe for re-entry when complete.

Exampe of an ozone system:

Below is an image of an ozone system that can be used for both water treatment and surface sanitation applications in one package.

This system has a larger 30 gallon contact tank to treat high water flow-rates of incoming water with low ozone dosages for disinfection purposes. The 30-gallon tank will provide sufficient contact time with ozone to achieve disinfection with ozone. An ORP meter is used to measure and control ozone levels in water.

The smaller ozone mixing tank will provide lower water flow rates with a high dissolved ozone level (>2.0 ppm) to be used for surface sanitation applications. A dissolved ozone meter is used to measure and control ozone levels in water real-time.

Custom OST ozone system with 2 separate ozone injection loopshttps://www.oxidationtech.com/products/ozone-water-system/ost.html#1025=

Below is an image of an ozone injection system that will dissolve ozone into water, but also includes ozone gas outlets to be used for room disinfection, odor control, or other ozone gas applications. An HMI touchscreen panel offers control of the ozone outputs via timers, and ozone monitors measuring ozone levels in each location.

OST-series ozone system with ozone gas valve options

Below is a diagram of how an ozone system can be configured for many various applications in the cannabis industry in one single package.

Ozone is produced via oxygen under pressure. This ozone gas is controlled and can be sent to various rooms with ozone monitors in each room. These ozone monitors will control ozone levels to proper levels for the specific application.

Ozone gas can be delivered to the venturi injector that is a part of the ozone mixing tank. This ozone in water can be plumbed directly to a point of use with a high level of ozone for sanitation applications. OR, can pass through a UV light that will safely revert all ozone back to oxygen prior to using in an irrigation system where ozone in water may be undesirable.

This system also shows an ozone destruct unit for ozone off-gas. This off-gassed ozone is reverted safely back to oxygen. This oxygen can be bubbled into an irrigation system to increase dissolved oxygen levels slightly.

As you can see, there are a wide variety of potential uses of ozone in the cannabis industry. Due to this wide variety, there is some misinformation and some myths about the use of ozone. If you would like to learn how ozone could benefit your facility, please contact our application engineers. We would be glad to help.

You’ll Know You’re Getting Chemical Free Home Water Disinfection When …

Ozone has been used to disinfect water for over 100 years. Many water treatment plants throughout the world not only use ozone to disinfect water, but also remove organic compounds and improve taste and smell. Ozone is an attractive alternative to chemical treatment because it is very effective and does not introduce any new chemicals to the water you use. The drawback has been a high initial cost and equipment maintenance. Advances in technology have brought ozone within the reach of the average home owner, and small scale reliable ozone generating equipment has stood the test of time. Our ozone water treatment (WT) system is simple to operate and monitor to ensure that it is working properly to provide safe water. Here are five routine, simple, and quick checks of your ozone WT system to maintain your peace of mind.

You will know your water’s staying clean when …

1) The desiccant air dryer feels warm.

Put your hand near the top of the air dryer. Does it feel warm? If it is cold, something is not right. The air dryer contains two cylinders of desiccant material. It is the same stuff you find in little packets sometimes placed in the packaging of sensitive electronic equipment. This material absorbs moisture from the air. Eventually it becomes saturated with water and no longer absorbs moisture. The water is removed by heating the desiccant material. The desiccant air dryer is designed to cycle back and forth between two cylinders filled with desiccant material. When air is flowing through one to remove the moisture, the other is being heated to drive off the moisture. If the outside of the box feels warm, this is a good sign that all is well.

2) The moisture indicator is blue.

The moisture indicator provides additional assurance that your ozone equipment is getting dry air. This little viewer contains crystals that change color in the presence of moisture. When it is blue, you can be sure the air feeding your ozone generator is dry. If it is not blue, it could mean that the dryer is not working properly, the crystals have been contaminated in some way, or the crystals need to be replaced. Don’t become alarmed right away. The dryer requires a good six hours of uninterrupted operation to stabilize. If the location is excessively warm or humid, the dryer will not perform well.

If you continue to suspect that the air dryer is not performing as it should after a number of checks over the course of a few days, try to determine what has failed. If the dryer feels warm but the moisture indicator is not blue, it may be that the moisture indicator is contaminated. New moisture indicators are available from our store. It is also possible that the desiccant material has been contaminated or worn out. In that case, you will need one of our desiccant refill kits. If the air dryer feels cold, check the power connections. We also sell replacement heater tubes that contain the desiccant. If you are unable to verify that the air dryer is working, it may be time for a new dryer.

The only part of the treatment system that is active 24/7 is the desiccant air dryer. All the other components wait until the well pump turns on.

3) The little silver ball in the flowmeter jumps up and hovers when the well pump turns on. (Newer models have a digital reading of air flow)

The flowmeter is a simple device telling us how much gas is flowing through the system. Air is pulled through the air dryer and ozone generator by suction produced by the black plastic venturi. Suction is created by the flow of water through the venturi. When the well pump turns on, water rushes through a narrow passage in the venturi. With sufficient flow, the water pressure differential between the input and output of the venturi creates air suction. Air flows through the tubing as it is pulled into the venturi. The little silver ball is lifted by this gas flow giving a visual indication that air is flowing through the system.

If no air flow is created when the water pump turns on, remove the ozone tube connected to the black venturi. Place your finger over the hole to see if suction is created. As long as the pump is running, the venturi should create air suction. If there is no suction, remove the check valve that is threaded directly to the venturi. Clear out any rust or mineral deposits. If the pump stops, water will squirt from this port, so try to open enough faucets to keep the pump running. If you are unsuccessful with getting air suction from the venturi, it could mean that the well pump is not pumping enough water through the venturi to create suction, or the venturi has worn out.

If you do have air suction at the venturi, but still no air flow indicated on your flowmeter, it may be that a check valve needs to be replaced or something else is blocking the flow. The source of blockage needs to be found and cleared before ozone generator will operate. The ozone generator turns on when it senses a sufficient flow of air. Most ozone generators will have a blue light indicating that the ozone generator is running.

4) You can smell ozone from the off-gas vent

But can you be sure that that sufficient ozone is being generated to disinfect your water? When your system is operating properly, left-over ozone that does not get dissolved into the water is vented from the top of your contact tank. If you remove the tubing from the off-gas vent, you should smell ozone when the system is running. It might take a little while for enough ozone gas to build up for venting, but when it accumulates at the top of the tank, it will be vented, often in short spurts.

5) Testing your water for dissolved ozone levels.

Ozone is a more powerful disinfectant than Chlorine. It destroys, inactivates, and prevents growth of bacteria and viruses with very low levels of dissolved ozone in water. As little as .3 ppm dissolved ozone for contact time of 5 minutes provides a 5 log (100,000 bacteria reduced to 1, 99.999% reduction) reduction of most bacteria and viruses. Contaminants are exposed to much higher levels of ozone when it passes through the venturi. By the time the water leaves the contact tank, any contaminants have been in contact with ozone long enough for most of them to be destroyed. The ozone has done its job and very little is left in the water that is distributed to your home. Enough will be left over to prevent growth. As little as 0.01 ppm will prevent growth. These low levels of ozone leaving your contact tank can be measured with our low cost K-7404 dissolved ozone test kit. You don’t want much ozone left in your water. Too much ozone left over in the water can lead to irritating ozone off-gas at the point of use.

Control Dangerous Bacteria in Water with Low Levels of Dissolved Ozone

Legionnaires’ disease is a bacterial pneumonia caused by breathing mist from water containing the bacteria. The bacteria thrive in the warm water found in whirlpool spas, cooling towers, fountains, humidifiers, produce misters, etc. Symptoms of Legionnaires’ disease include high fever, a cough, and sometimes muscle aches and headaches.

The rate of reported cases has increased over 5 fold since 2000, and deadly outbreaks continue today unabated. The reason or reasons behind this increase are unclear at this point, but ozone has proven to be effective at controlling the bacteria in water. Whether the bacteria are flourishing within a 100 gallon fountain or a 1000 ton cooling tower, the engineers at Oxidation Technologies will maintain will provide the precise dose of ozone needed for safe water.

Ozone that is safely dissolved into water has a tremendous disinfectant power and simply turns back into oxygen after expending its energy. As little as 0.01 ppm (1 part ozone to 100 million parts water) prevents the growth of these bacteria. We provide cost effective equipment and long term service to ensure safe and effective use of ozone for bacteria control.

The equipment needed to dissolve low levels of ozone into water can be very cost effective and sustainable for many water systems. A home well-water system uses one of the smallest ozone generators we sell to dissolve enough ozone when the well pump runs to disinfect all the water needed in a typical home. As a general rule of thumb for industrial cooling towers, five grams of ozone per hour is needed for every 100 tons of tower cooling capacity.

The 50 g/h ozone generator needed to supply a 1000 ton cooling tower will also require an oxygen concentrator, venturi, ORP controller, and sometimes a booster pump. The oxygen concentrator and controller comes in a complete package with our OXG systems. The following study conducted by Mazzei reports a one year payback for ozone use due to lower chemical and cleaning costs.

We also provide the convenience of a quarterly preventative maintenance plan to make sure the system continues to perform at peak efficiency and avoid costly repairs due to neglected maintenance. We often work with an independent water company that provides routine testing for the customer to make sure water quality remains good and inform us of any problems.

Check out our website for more information and give us a call with any questions.  Oxidation TechnologiesPhone: 515-635-5854
Toll Free: 844-398-9579
Tech Info E-mail: info@oxidationtech.com
Sales E-mail: sales@oxidationtech.com

Making Sense of Ozone Measurements

How much ozone is a particular machine making?

How concentrated is the ozone?

CONCENTRATION

One useful way to measure ozone concentration is to state how many parts of ozone are present per million parts of gas (normally air.) We can smell ozone when it is present in the air in as low as .01 parts per million (10 parts per billion). At .1 ppm levels in ambient air, ozone becomes uncomfortable. Industrial ozone generators can produce ozone in concentrations well over 100,000 parts per million. Usually these larger concentrations are expressed in % by weight. 100,000 ppm could be written as 100,000/1,000,000 which is 10/100 or 10%. Because the weight of an ozone molecule is heavier than the other gas molecules making up air, the actual measurement is 13.7 %wt. Parts per million is useful for many applications, but sometimes it is handy to use parts per billion for very low concentrations. The general principle is to reduce the number of zeros when communicating this information. We do the same thing when measuring distance with millimeters or kilometers etc. A good starting point to get a feel for ozone concentration is to become familiar with ppm and %wt. We provide definitions for other common units and links for conversions and calculators at our calculations page.

QUANTITY

A second dimension of ozone measurement is the actual quantity of ozone being produced or used. The production of smaller generators is measured in grams per hour. The production of the largest generators is measured in pounds per day. 1 lb/day ozone = 18.89 g/hr ozone. The smallest ozone generators we sell generate less than a half of a gram per hour. That would be about a hundredth of a pound per day which is an awkward figure to use. “Grams per hour” happens to be practical for describing the output of lower production machines. The larger ones we sell generate 1000 grams per hour or 50 pounds per day. Pounds per day happens to be practical for larger machines. A drinking water treatment plant in Texas uses up to 42,900 pounds of ozone per day (over 200 tons). One lightning storm can generate over 200 tons of ozone.

FLOW RATE

A third dimension of measurement for any gas application is flow rate. When generating ozone, flow rate will affect the ozone concentration. With a given ozone production rate (for example, 200 grams per hour), lower flow rates will result in higher ozone concentrations. Higher flow rates will result in lower concentrations. One useful calculator helps determine the amount of ozone needed to supply a particular concentration at a particular flow rate.  For example, if you need a concentration of 5% by weight and have an oxygen flow of 10 LPM, you will need a generator capable of 43 grams per hour. If the flow doubles to 20 LPM, the concentration is cut in half.

People working with municipal water treatment get used to working with larger units such as pounds per day and high ozone concentrations. People working with sanitation equipment and other mid-scale applications get used to thinking in terms of grams per hour and the whole spectrum of ozone concentration measurements. Those involved in small household applications and generators are more familiar with milligrams per hour and low concentrations. Our system integration experts need to be familiar with the whole spectrum of measurements. Familiarity and precision in application grows with years and diversity of experience. Our online calculator provides a powerful tool for an efficient and effective integration of ozone into your application.

Oxidation Technologies provides equipment, engineering expertise, and service to a wide range of applications and ozone demands. Our service requires flexibility in thinking and a familiarity with the full spectrum of ozone concentrations. We build ozone systems to integrate into your existing industrial process. Every situation has a multitude of variables that will affect the performance.

Give us a call. We’d love to help you harness the power of ozone for your application.  515-635-5854

Clean Dry Air

Water content needs to be nearly zero for ozone generator feed gas.

Long term, reliable operation of an ozone system depends largely on clean, dry air. Unless you have liquid oxygen (LOX) as an oxygen source, your ozone will be generated from the oxygen found in ambient air. The air around us contains dust particles, and lots of water vapor. One cubic meter of air on a hot humid day can contain up to 30 grams of water. Even a gram of water vapor in a cubic meter of air (dew point -5 deg. F) will inevitably lead to failure of the ozone generating equipment. We need to get another 9/10 of a gram of water out to keep an ozone generator in good shape.

Water content in air is most commonly measured in terms of dew point. Dew point is the temperature at which water vapor condenses into liquid. When a mass of air cools down to very cold temperatures before water condenses, it indicates that there is not much water vapor in the air. The graph shows that dew point is not linear in relation to the amount of water vapor in the air. It is easy to see that the water content gets close to zero at about -50 degrees F. Large ozone systems operate with feed gas between -100 and -60.

An air filter and desiccant air dryer is often used to clean and dry the air for a small air-fed ozone system. The desiccant material absorbs moisture from the air as it passes through. When the desiccant becomes saturated, air flow is switched to a second chamber of desiccant material while heat is applied to the first to drive the water from the material in the first chamber. The processes switches back and forth, effectively dries the air to a dewpoint of -40 deg F. This is a cost effective level of dryness for small ozone systems.

Ozone systems that use an oxygen concentrator are able to take even more water out of the feed gas. The first line of defense will be the air filter for the air coming into the air compressor used for your ozone system. This filter will remove particles of dust that eventually wear out the compressor as well. The compression process also serves to remove much of the water when the hot compressed air cools forming water droplets that can be removed with a coalescing filter. A compressor with a means to cool the compressed air can bring the dew point from 60 to 40 degrees. This compressed air is forced through the zeolite sieve beds of and oxygen concentrator. The zeolite quickly absorbs the Nitrogen and remaining water vapor. As the oxygen concentrator cycles, the Nitrogen and water vapor is exhausted, leaving 93% oxygen with a dew point from -60 to -100 degrees F.  The oxygen concentrator works well as long as water vapor does not build up or condense in the sieve beds. They will not work well when the compressed air has a dew point above 40 degrees or the sieve material absorbs moisture during down time.

Oxidation Technologies provides sales, service, and system design of gas preparation equipment for ozone systems.  

Flow-Meter Quiz

Efficient and accurate ozone production requires accurate measurements of gas flow rates. The rota-meter style flow-meter is a simple, robust, and accurate way to measure the flow of gas or liquid.   The only moving part is a metal ball (float) within a tapered transparent tube.  As flow rate increases, the ball rises.  Try out this quick, one-question quiz to test your ability to read this instrument.

One limitation to this device is its inability to factor in gas pressure in a direct reading.  Gas under pressure is squeezed together so more gas is able to flow past the ball than it reads.  Some flow-meters are calibrated for a specific gas pressure.  Such meters are accurate only at that pressure.  This limitation is easily overcome with a simple calculation.   You can calculate an accurate flow rate at any pressure when you  know the gas pressure of the gas flowing through the meter.  How did you do on the quiz?  If you haven’t tried it yet, check out our calculator page for better chance of getting it right.

 

Tools for ozone monitor calibration and bump-testing

Ozone monitors and sensors should be calibrated every 6-months to 1-year. This calibration can be done by our technicians to a NIST traceable standard. However, if this is something you prefer to perform on-site we have a few tools you can use to perform calibrations on-site, or bump-test your ozone monitor between calibration intervals.

Learn more about ozone monitor calibration on our main website HERE.

Model 306 Calibration Source

The Model 306 Calibration Source is a UV based ozone source that is portable and easy to use.  This device will provide a known quantity of ozone gas in a sample stream of 3 LPM.  Three usable settable ozone ranges are available to choose from for calibration.  This will allow the calibration of most ozone sensors that have a calibration adapter or a flow-cell where gas can flow to or through the sensor for calibration. This device requires no zero air cylinder and can use ambient air for ozone sensor calibrations.  The accuracy of this device is 2% which is superior to any other portable calibrator available on the market.

Calibrate Ozone monitors with the Model 206
306 Calibration Source

A23-14 Ozone Calibrator

The A23-14 Ozone calibrator is used to calibrate your ozone sensors. This device creates a known level of ozone with the factory calibrated ozone generator. Easy to use, and portable this unit can be carried to your ozone sensor.  Accurate to within 5-10% depending upon the application.

A23-14 Ozone Calibration Kit for field calibration of ozone sensors
        A23-14

Ozone Puffer

The ozone puffer is a simple to use tool to bump-test ozone sensors. Portable and battery powered, this is the easiest method to quickly bump-test your sensor between calibration intervals.  Battery powered unit requires no power cord and is completely portable.

Bump testing is a great method to ensure your sensor is responding to ozone when necessary. Bump testing is not a replacement for calibration. However, bump testing can be done between calibrations to ensure proper response of your ozone sensor, and ensure that a sensor failure has not occured. We suggest bump testing your ozone monitor as often as daily in extremely critical applications. Weekly or montly internvals are common for bump testing your sensor between annual calibration periods.

A23-14 Ozone Calibration Kit for field calibration of ozone sensors
Ozone Puffer.

OG-3 Checker

The OG-3 Calibration Checker is primarily used for Eco-Sensors devices. This will create a known ozone level for bump testing or checking calibration of your sensor between calibration intervals.

OG-3 Ozone calibration checker for accurate bump testing ozone monitors
OG-3 Checker 

Ozone Chambers

We can also provide complete ozone chambers to be used for calibration purposes.  We build standard and custom ozone chambers for ozone exposure testing.  These chambers can also be used for calibrating one, or multiple ozone sensors at one time.  Using a calibration chamber any level of ozone desired can be chosen and entered into the control system, the chamber will maintain that ozone level, by placing your ozone sensors inside the chamber you can validate the readings of your ozone sensors and adjust accordingly.

CH-3 Ozone Mobile Chamber
CH-Series Ozone Chamber

 

Should you have any further questions on ozone monitor calibration please call our office.  We would be glad to help with your specific needs or to meet any specific criteria you have.

Materials ozone resistance chart

A common question when implementing ozone into a new application is how will ozone affect the materials we currently have in place.  Below is a useful chart showing the resistance of common materials to ozone oxidation.

A = Excellent – no effect from ozone in normal operation

B = Good – some oxidation from ozone, these materials can work with low ozone concentrations or short-term (less than 6-month) usage

C = Fair – major effect from ozone oxidation, these materials should only be used for short-term applications or very low ozone levels

D = Poor – severe oxidation from ozone will be noticed quickly.

ABS plastic B – Good
Acetal (Delrin®) C – Fair
Aluminum A – Excellent
Brass B – Good
Bronze B – Good
Buna N (Nitrile) D – Poor
Carbon Steel C – Fair
Cast iron C – Fair
Ceramic A – Excellent
ChemRaz (FFKM) B – Good
Copper A – Excellent
CPVC A – Excellent
EPDM B – Good
Fluorocarbon (FKM) A – Excellent
Hastelloy-C® A – Excellent
HDPE B – Good
Hypalon® A – Excellent
Hytrel® C – Fair
Kalrez A – Excellent
Kel-F® A – Excellent
LDPE C – Fair
Natural rubber D – Poor
Neoprene C – Fair
NORYL® B – Good
Nylon D – Poor
Polycarbonate A – Excellent
Polyetherether Ketone (PEEK) A – Excellent
Polyethylene B – Good
Polypropylene B – Good
Polyurethane A – Excellent
PTFE A – Excellent
PVC B – Good
PVDF (Kynar®) A – Excellent
Silicone A – Excellent
stainless steel – 304 B – Good
stainless steel – 316 A – Excellent
Titanium A – Excellent
Tygon® B – Good
Viton® A – Excellent

More useful information on ozone resistance can be found HERE

We also perform ozone resistance testing in our ozone chambersContact us for information about this service should you have any materials you have specific questions on.

The Color of Ozone

Does ozone gas have a color? Yes, the color is blue. The problem is, ozone is normally found in gas, or in water at such low concentrations that the color is not visible.

Recently we performed some lab testing that required ozone levels in water greater than 100 ppm. The picture below provide some great examples of the color of ozone.

 

ozone color
0 ppm ozone on left vs >100 ppm ozone on right

 

Ozone in water
The Color of Ozone is visible in this image

 

ozone in water
An ATI Q45 Dissolved Ozone Monitor was used to measure dissolved ozone in water. The blue color of the water is even slightly visible in the flow cell used to measure ozone.

 

Dissolved Ozone in water
AS the dissolved ozone level increases the color of the water gets darker. The blue color in the water starts to become visually evident above 50 ppm.

 

Ozone levels in water turn water blue
The blue color of ozone is more visual in larger containers like this 1-gallon water jug.

 

Ozone Properties

The table below provides additional information on the properties of ozone. This shows the color of ozone is light blue, which is true. It is only visibly blue when ozone gas or ozone in water is at a very high concentration.

Property Ozone Oxygen
Molecular Formula O3 O2
Molecular Weight 48 g/mol 32 g/mol
Color Light blue Colorless
Smell Odor threshold of 0.001 ppm, pungent at high levels Odorless
Melting Point -192.5 deg C -218.79 deg C
Boiling point -111.9 deg C -1892.95 deg C
Critical Temperature -121 deg C -118.56 deg C
Critical Pressure 54.5 atm 5.043 atm
Density 2.144 g/l @ 0 deg C 1.429 g/l @ 0 deg C
Solubility @ 0 deg C 0.64 g/100 ml 0.049 g/100 ml
Electrochemical Potential 2.07 V 1.23 V

 

Ozone Solubility

Ozone is only partially soluble into water. The graph below shows the solubility of ozone into water based on water temperature and ozone gas concentration. As the water temperature decreases and ozone concentration increases ozone becomes more soluble into water.

Water pressure is the third and final factor in determining ozone solubility into water. However, as these images were taken of water at ambient pressure, this was not a factor used, and is not a required factor in achieving high ozone levels into water.

Do you have a need to achieve higher ozone levels into water? Or lab testing that requires dissolved ozone levels higher than off-the-shelf equipment can provide? Give us a call, we would be glad to help.

 

Comparison of oxygen concentrator styles

Oxygen Concentrator Types Compared

The purpose of this article is to explain the main types of oxygen generators available for ozone production and the advantages/disadvantages of each.

There are a few manufacturers of oxygen generators and a few differences between each. However, the fundamental operation of each manufactures version is very similar so that will not be reviewed here. We will focus on the three main styles of oxygen generators and how they could be implemented into your ozone generation system.

 

Sequal and OGSI OEM Oxygen Generator
Industrial oxygen generator

Generally smaller ozone systems will use the turnkey oxygen generators, and larger ozone systems with higher ozone production rates will use the industrial oxygen generators, while small to medium integrated ozone systems will use the OEM modules. However, there are applications where the industrial style oxygen generator is required for higher pressures, or turnkey oxygen generators are required due to the lack of space or available compressed air.

 

Turnkey Oxygen concentrators

Packaged oxygen generators that include an oil-less compressor, PSA oxygen generator, and all components to concentrate oxygen from ambient air. These units only need electrical power for operation and will provide oxygen at 93% purity.

 

Examples:

    • OGSI, OG-15 and OG-20
    • AirSep, AS-12 and Onyx
    • Sequal (Chart), Workhorse line

Turnkey packaged oxygen generators from airsep, OGSI, Sequal

 

 

Advantages:

  • Compact size allows for install in relatively tight spaces
  • Turnkey design allows for quick and easy operation
  • Relatively low cost

Disadvantages:

  • Lower oxygen output delivery pressures due to limitation of internal oil-less compressors
  • Poor reliability due to the lack of ability to purge moisture from process air
  • High maintenance costs due to poor reliability

 

 

OEM Modules

OEM models are offered by both OGSI and Sequal (Chart). The OEM modules use the same PSA sieve beds and valving systems as the turnkey packaged oxygen generators provided by those companies. These modules are commonly used to build ozone generators with integrated oxygen generators, or smaller integrated ozone systems.

 

Examples:

    • OGSI, OG-15-OEM and OG-20-OEM
    • Sequal (Chart), ATF Modules, ATF-8, ATF-12, ATF-15, ATF-23, ATF-25, and ATF-32

OEM oxygen generator from OGSI and Sequal

 

 

Advantages:

  • Compact size allows for install in relatively tight spaces
  • OEM configuration allows for installation into the same enclosure as an ozone generator if desired
  • Use of compressed air from plant air compressor may allow for very clean, dry air to be used increasing reliability dramatically when compared to the turnkey packaged oxygen generators.
  • Can provide slightly higher oxygen delivery pressure than turnkey packaged oxygen generators due to the higher compressed air inlet pressures that can be used
  • Lowest potential operational costs if plant compressed air is used

Disadvantages:

  • Installation equipment is required and must be done properly for reliable operation
  • Lower oxygen output delivery pressures than industrial oxygen generators
  • Potentially high replacement costs (applies to Sequal/Chart ATF-modules)

 

 

Industrial Oxygen concentrators

Industrial oxygen concentrators are used for medium to large scale ozone generation systems. These systems require compressed air for operation along with proper plumbing and set-up. Large steel cylinders are used to hold the molecular sieve material, and quality rebuildable solenoid valves are used to perform all purging and oxygen recovery actions.

 

Examples:

    • OGSI, OG-25, OG-50, OG-100, etc
    • AirSep, AS-A, AS-B, AS-D, AS-E, etc

Industrial oxygen generators from Airsetp and OGSI

 

 

Advantages:

  • Long term reliability of the system – only periodic maintenance is required
  • Lower overall long-term operational costs than other options due to low cost for rebuilding the unit
  • Higher oxygen delivery pressures (45 – 65 PSI)
  • Higher oxygen flow-rates available

Disadvantages:

  • Higher up-front capital costs for oxygen generator, tanks, and potentially the air compressor
  • May require more physical space for installation
  • Greater installation work required

View full page with additional Information HERE